Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.570
1.
J Neurosci Res ; 102(5): e25338, 2024 May.
Article En | MEDLINE | ID: mdl-38706427

The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.


Brain Injuries, Traumatic , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Rats, Sprague-Dawley , Animals , Male , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Rats , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Kynurenine/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Disease Models, Animal , Recovery of Function/drug effects , Tryptophan/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects
2.
Sci Rep ; 14(1): 8367, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600221

Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.


Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Humans , Animals , Epilepsy, Post-Traumatic/etiology , Astrocytes/metabolism , Transcriptome , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Seizures , Gene Expression Profiling , Disease Models, Animal
3.
Drug Des Devel Ther ; 18: 1175-1188, 2024.
Article En | MEDLINE | ID: mdl-38645986

Purpose: Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods: The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results: We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion: The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.


Brain Injuries, Traumatic , Molecular Docking Simulation , Network Pharmacology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Animals , Mice , Plants, Medicinal/chemistry , Male , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Luteolin/pharmacology , Luteolin/chemistry , Mice, Inbred C57BL , Humans
4.
Acta Neurochir (Wien) ; 166(1): 190, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653934

BACKGROUND: Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS: Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS: Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS: Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.


Brain Injuries, Traumatic , Cerebrovascular Circulation , Homeostasis , Intracranial Pressure , Lactic Acid , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/metabolism , Child , Adolescent , Homeostasis/physiology , Female , Male , Retrospective Studies , Intracranial Pressure/physiology , Cerebrovascular Circulation/physiology , Lactic Acid/metabolism , Lactic Acid/analysis , Microdialysis/methods , Pyruvic Acid/metabolism , Pyruvic Acid/analysis , Brain/metabolism , Brain/physiopathology
5.
Sci Transl Med ; 16(743): eadk9129, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630849

Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the ß2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.


Brain Injuries, Traumatic , Fractures, Bone , Humans , Animals , Mice , Fracture Healing/physiology , Vascular Endothelial Growth Factor A , Adrenergic Agents , Retrospective Studies , Brain Injuries, Traumatic/metabolism , Neovascularization, Pathologic , Norepinephrine
6.
Cell Stem Cell ; 31(4): 519-536.e8, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579683

Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.


Amyotrophic Lateral Sclerosis , Brain Injuries, Traumatic , Frontotemporal Dementia , Neurodegenerative Diseases , Potassium Channels, Inwardly Rectifying , Humans , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/pathology , Brain/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/etiology , Frontotemporal Dementia/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism
7.
Front Immunol ; 15: 1343364, 2024.
Article En | MEDLINE | ID: mdl-38558799

Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.


Brain Injuries, Traumatic , Extracellular Vesicles , Humans , Microglia/metabolism , Macrophages/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Brain Injuries, Traumatic/metabolism , Lung/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
8.
Mol Med Rep ; 29(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38639190

Traumatic Brain Injury (TBI) represents a significant public health challenge. Recovery from brain injury necessitates the collaborative efforts of various resident neural cells, predominantly microglia. The present study analyzed rat and mouse RNA expression micro­arrays, high­throughput RNA sequencing and single­cell sequencing data sourced from public databases. To construct an inflammation regulation network around TYRO protein tyrosine kinase­binding protein (TYROBP), to evaluate the role of TYROBP in cell death after TBI. These findings indicate that following TBI, neurons predominantly communicate with one another through the CXC chemokine ligand (CXCL) and CC chemokine ligand (CCL) signaling pathways, employing a paracrine mechanism to activate microglia. These activated microglia intensify the pathological progression of brain injury by releasing factors such as tumor necrosis factor α (TNF­α), vascular endothelial growth factor and transforming growth factor ß via the NF­κB pathway. Cells co­culture experiments demonstrated that neurons, impaired by mechanical injury, interact with microglia through non­contact mechanisms. Activated microglia secrete cytokines, including TNF­α, CXCL­8 and CCL2, which trigger an inflammatory response and facilitate neuronal apoptosis. TYROBP gene knockout in microglia was demonstrated to reduce this interaction and reduce neuronal cell apoptosis rates.


Adaptor Proteins, Signal Transducing , Brain Injuries, Traumatic , Microglia , Animals , Mice , Rats , Apoptosis , Brain Injuries, Traumatic/metabolism , Inflammation/metabolism , Ligands , Mice, Inbred C57BL , Microglia/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adaptor Proteins, Signal Transducing/metabolism
9.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685031

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Brain Injuries, Traumatic , Brain , Cognitive Dysfunction , Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Microglia , Animals , Diet, High-Fat/adverse effects , Microglia/metabolism , Microglia/pathology , Male , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Macrophages/metabolism , Macrophages/pathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain/pathology , Brain/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Recognition, Psychology/physiology , Obesity/pathology , Obesity/complications , Maze Learning/physiology
10.
Redox Biol ; 72: 103156, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640584

Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.


Brain Injuries, Traumatic , Copper Transport Proteins , Hippocampus , Mitophagy , Neurons , Oxidative Stress , Protein Deglycase DJ-1 , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/genetics , Mice , Hippocampus/metabolism , Hippocampus/pathology , Neurons/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Copper Transport Proteins/metabolism , Copper Transport Proteins/genetics , Mitochondria/metabolism , Disease Models, Animal , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Male , Antioxidants/metabolism , Cell Line , Humans
11.
Cell Mol Neurobiol ; 44(1): 41, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656449

The cadherin family plays a pivotal role in orchestrating synapse formation in the central nervous system. Cadherin-related family member 1 (CDHR1) is a photoreceptor-specific calmodulin belonging to the expansive cadherin superfamily. However, its role in traumatic brain injury (TBI) remains largely unknown. CDHR1 expression across various brain tissue sites was analyzed using the GSE104687 dataset. Employing a summary-data-based Mendelian Randomization (SMR) approach, integrated analyses were performed by amalgamating genome-wide association study abstracts from TBI with public data on expressed quantitative trait loci and DNA methylation QTL from both blood and diverse brain tissues. CDHR1 expression and localization in different brain tissues were meticulously delineated using western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay. CDHR1 expression was consistently elevated in the TBI group compared to that in the sham group across multiple tissues. The inflammatory response emerged as a crucial biological mechanism, and pro-inflammatory and anti-inflammatory factors were not expressed in either group. Integrated SMR analyses encompassing both blood and brain tissues substantiated the heightened CDHR1 expression profiles, with methylation modifications emerging as potential contributing factors for increased TBI risk. This was corroborated by western blotting and immunohistochemistry, confirming augmented CDHR1 expression following TBI. This multi-omics-based genetic association study highlights the elevated TBI risk associated with CDHR1 expression coupled with putative methylation modifications. These findings provide compelling evidence for future targeted investigations and offer promising avenues for developing interventional therapies for TBI.


Brain Injuries, Traumatic , Cadherins , Animals , Humans , Male , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Cadherin Related Proteins , Cadherins/genetics , Cadherins/metabolism , DNA Methylation/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics
12.
Discov Med ; 36(183): 842-852, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665032

BACKGROUND: Following traumatic brain injury (TBI), an imbalance arises in the central nervous system within the hippocampus region, resulting in the proliferation of mossy cell fibers, causing abnormal membrane discharge. Moreover, disruptions in cellular neurotransmitter secretion induce post-traumatic epilepsy. Extensive experimental and clinical data indicate that the orexin system plays a regulatory role in the hippocampal central nervous system, but the specific regulatory effects are unclear. Therefore, further experimental evaluation of its relevance is needed. OBJECTIVE: This study aims to investigate the effects of orexin receptor agonists (OXA) on the seizure threshold and intensity in controlled cortical impact (CCI) mice, and to understand the role of the orexin system in post-traumatic epilepsy (PTE). METHODS: Male C57BL/6 mice weighing 18-22 g were randomly divided into three groups: Sham, CCI, and CCI+OXA. The three groups of mice were sequentially constructed with models, implanted with electrodes, and established drug-delivery cannulas. After a 30-day recovery, the Sham and CCI groups were injected with physiological saline through the administration cannulas, while the CCI+OXA group was injected with OXA. Subsequently, all mice underwent electrical stimulation every 30 minutes for a total of 15 times. Epileptic susceptibility, duration, intensity, and cognitive changes were observed. Concurrently, the expression levels and changes of GABAergic neurons in the hippocampus of each group were examined by immunofluorescence. RESULTS: Injecting OXA into hippocampal CA1 reduces the threshold of post-traumatic seizures, prolongs the post-discharge duration, prolongs seizure duration, reduces cognitive ability, and exacerbates the loss of GABAergic neurons in the hippocampal region. CONCLUSIONS: Based on the results, we can find that injecting OXA antagonists into the CA1 region of the hippocampus can treat or prevent the occurrence and progression of post-traumatic epilepsy.


Brain Injuries, Traumatic , Mice, Inbred C57BL , Orexins , Animals , Male , Mice , Orexins/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Orexin Receptors/metabolism , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/metabolism , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Epilepsy/etiology , Epilepsy/metabolism , Seizures/etiology , Seizures/metabolism
13.
Biomolecules ; 14(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38672403

Vascular contribution to cognitive impairment and dementia (VCID) is a term referring to all types of cerebrovascular and cardiovascular disease-related cognitive decline, spanning many neuroinflammatory diseases including traumatic brain injury (TBI). This becomes particularly important during mild-to-moderate TBI (m-mTBI), which is characterized by short-term memory (STM) decline. Enhanced cerebrovascular permeability for proteins is typically observed during m-mTBI. We have previously shown that an increase in the blood content of fibrinogen (Fg) during m-mTBI results in enhanced cerebrovascular permeability. Primarily extravasated via a transcellular pathway, Fg can deposit into the parenchyma and exacerbate inflammatory reactions that can lead to neurodegeneration, resulting in cognitive impairment. In the current study, we investigated the effect of a chronic reduction in Fg concentration in blood on cerebrovascular permeability and the interactions of extravasated Fg with astrocytes and neurons. Cortical contusion injury (CCI) was used to generate m-mTBI in transgenic mice with a deleted Fg γ chain (Fg γ+/-), resulting in a low blood content of Fg, and in control C57BL/6J wild-type (WT) mice. Cerebrovascular permeability was tested in vivo. Interactions of Fg with astrocytes and neurons and the expression of neuronal nuclear factor-кB (NF-кB) were assessed via immunohistochemistry. The results showed that 14 days after CCI, there was less cerebrovascular permeability, lower extravascular deposition of Fg, less activation of astrocytes, less colocalization of Fg with neurons, and lower expression of neuronal pro-inflammatory NF-кB in Fg γ+/- mice compared to that found in WT mice. Combined, our data provide strong evidence that increased Fg extravasation, and its resultant extravascular deposition, triggers astrocyte activation and leads to potential interactions of Fg with neurons, resulting in the overexpression of neuronal NF-кB. These effects suggest that reduced blood levels of Fg can be beneficial in mitigating the STM reduction seen in m-mTBI.


Brain Injuries, Traumatic , Fibrinogen , Mice, Inbred C57BL , Mice, Knockout , Animals , Fibrinogen/metabolism , Fibrinogen/genetics , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/genetics , Mice , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , Male , Capillary Permeability , Heterozygote , Neurons/metabolism , Disease Models, Animal
14.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Article En | MEDLINE | ID: mdl-38649789

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Brain Injuries, Traumatic , Membrane Glycoproteins , Microglia , Receptors, Immunologic , White Matter , Animals , Male , Mice , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/genetics , Disease Models, Animal , Liver X Receptors/metabolism , Liver X Receptors/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , White Matter/metabolism , White Matter/pathology
15.
Aging (Albany NY) ; 16(7): 6566-6587, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38604164

Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.


Brain Injuries, Traumatic , MAP Kinase Signaling System , Neovascularization, Physiologic , Proto-Oncogene Proteins c-akt , Transcranial Direct Current Stimulation , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Male , Neovascularization, Physiologic/drug effects , Rats, Sprague-Dawley , Humans , Human Umbilical Vein Endothelial Cells , Disease Models, Animal , Signal Transduction , Angiogenesis
16.
Acta Physiol (Oxf) ; 240(6): e14142, 2024 Jun.
Article En | MEDLINE | ID: mdl-38584589

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.


Amyloid beta-Protein Precursor , Astrocytes , Gliosis , Animals , Gliosis/metabolism , Gliosis/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cells, Cultured , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice, Knockout
17.
Neurochem Int ; 176: 105741, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621511

Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17ß (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.


Brain Injuries, Traumatic , Frailty , Menopause , Humans , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Female , Menopause/metabolism , Menopause/physiology , Frailty/metabolism , Estradiol/metabolism
18.
Neurochem Int ; 176: 105742, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641028

Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.


Brain Injuries, Traumatic , Disease Models, Animal , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Mice , Male , Mice, Inbred C57BL , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
19.
Brain Res ; 1834: 148907, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570153

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.


Brain Injuries, Traumatic , Microglia , Neuroinflammatory Diseases , Syk Kinase , Triggering Receptor Expressed on Myeloid Cells-1 , p38 Mitogen-Activated Protein Kinases , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Microglia/metabolism , Microglia/drug effects , Syk Kinase/metabolism , Syk Kinase/antagonists & inhibitors , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Signal Transduction/drug effects , Brain Edema/metabolism , Brain Edema/drug therapy , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL
20.
Horm Mol Biol Clin Investig ; 45(1): 1-15, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38507353

OBJECTIVES: Studies suggest that both genomic and nongenomic pathways are involved in mediating the salutary effects of steroids following traumatic brain injury (TBI). This study investigated the nongenomic effects of 17ß-estradiol (E2) mediated by the PI3K/p-Akt pathway after TBI. METHODS: Ovariectomized rats were apportioned to E2, E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicles were injected before the induction of TBI and injection of drugs. Diffuse TBI was induced by the Marmarou model. Evans blue (EBC, 5 h), brain water contents (BWC), histopathological changes, and brain PI3K and p-Akt protein expressions were measured 24 h after TBI. The veterinary comma scale (VCS) was assessed before and at different times after TBI. RESULTS: The results showed a reduction in BWC and EBC and increased VCS in the E2, E2-BSA, and G1 groups. Also, E2, E2-BSA, and G1 reduced brain edema, inflammation, and apoptosis. The ICI and G15 inhibited the beneficial effects of E2, E2-BSA, and G1 on these parameters. All drugs, following TBI, prevented the reduction of brain PI3K/p-Akt expression. The individual or combined use of ICI and G15 eliminated the beneficial effects of E2, E2-BSA, and G1 on PI3K/p-Akt expressions. CONCLUSIONS: These findings indicated that PI3K/p-Akt pathway plays a critical role in mediating the salutary effects of estradiol on histopathological changes and neurological outcomes following TBI, suggesting that GPER and classic ERs are involved in regulating the expression of PI3K/p-Akt.


Brain Injuries, Traumatic , Neuroprotective Agents , Serum Albumin, Bovine , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Estrogens/pharmacology , Estradiol/pharmacology , Estradiol/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Receptors, G-Protein-Coupled
...